Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Viruses ; 15(8)2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37632122

RESUMO

The COVID-19 pandemic had a profound impact on influenza activity worldwide. However, as the pandemic progressed, influenza activity resumed. Here, we describe the influenza epidemic of high intensity of the 2022-2023 season. The epidemic had an early start and peaked in week 51.2022. The extremely high intensity of the epidemic may have been due to a significant decrease in herd immunity. The results of PCR-testing of 220,067 clinical samples revealed that the influenza A(H1N1)pdm09 virus dominated, causing 56.4% of positive cases, while A(H3N2) influenza subtype accounted for only 0.6%, and influenza B of Victoria lineage-for 34.3%. The influenza vaccine was found to be highly effective, with an estimated effectiveness of 92.7% in preventing admission with laboratory-confirmed influenza severe acute respiratory illness (SARI) cases and 54.7% in preventing influenza-like illness/acute respiratory illness (ILI/ARI) cases due to antigenic matching of circulated viruses with influenza vaccine strains for the season. Full genome next-generation sequencing of 1723 influenza A(H1N1)pdm09 viruses showed that all of them fell within clade 6B.1A.5.a2; nine of them possessed H275Y substitution in the NA gene, a genetic marker of oseltamivir resistance. Influenza A(H3N2) viruses belonged to subclade 3C.2a1b.2a.2 with the genetic group 2b being dominant. All 433 influenza B viruses belonged to subclade V1A.3a.2 encoding HA1 substitutions A127T, P144L, and K203R, which could be further divided into two subgroups. None of the influenza A(H3N2) and B viruses sequenced had markers of resistance to NA inhibitors. Thus, despite the continuing circulation of Omicron descendant lineages, influenza activity has resumed in full force, raising concerns about the intensity of fore coming seasonal epidemics.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Vírus da Influenza A Subtipo H1N1/genética , Estações do Ano , Eficácia de Vacinas , Vírus da Influenza A Subtipo H3N2/genética , Pandemias , Federação Russa/epidemiologia
2.
J Infect Dis ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527470

RESUMO

BACKGROUND: The Global Influenza Hospital Surveillance Network (GIHSN) has since 2012 provided patient-level data on severe influenza-like illnesses from over 100 participating clinical sites worldwide based on a core protocol and consistent case definitions. To our knowledge, this is the first study to analyze multiple years of global, patient-level data generated by prospective, hospital-based surveillance across a large number of countries to investigate geographic differences in influenza severity. METHODS: We used multivariable logistic regression to assess the risk of intensive care unit admission, mechanical ventilation, and in-hospital death among hospitalized patients with influenza and explored the role of patient-level covariates and country income. RESULTS: The dataset included 73,121 patients hospitalized with respiratory illness in 22 countries, with 15,660 laboratory-confirmed for influenza. After adjusting for patient-level covariates we found a 7-fold increase in the risk of influenza-related intensive care unit admission in lower middle-income countries, compared to high-income countries (p = 0.01). The risk of mechanical ventilation and in-hospital death also increases by four-fold in lower middle-income countries, though these values were not statistically significant. We also find that influenza severity increased with older age and number of comorbidities. Across all severity outcomes studied and after controlling for patient characteristics, infection with influenza A/H1N1pdm09 was more severe than with A/H3N2. CONCLUSIONS: Our study provides new information on influenza severity in under-resourced populations, particularly those in lower middle-income countries. Understanding the mechanisms responsible for these disparities will be important to improve management of influenza, optimize vaccine allocation, and mitigate global disease burden.

3.
Open Forum Infect Dis ; 10(6): ofad244, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37383245

RESUMO

Background: The Global Influenza Hospital Surveillance Network (GIHSN) was established in 2012 to conduct coordinated worldwide influenza surveillance. In this study, we describe underlying comorbidities, symptoms, and outcomes in patients hospitalized with influenza. Methods: Between November 2018 and October 2019, GIHSN included 19 sites in 18 countries using a standardized surveillance protocol. Influenza infection was laboratory-confirmed with reverse-transcription polymerase chain reaction. A multivariate logistic regression model was utilized to analyze the extent to which various risk factors predict severe outcomes. Results: Of 16 022 enrolled patients, 21.9% had laboratory-confirmed influenza; 49.2% of influenza cases were A/H1N1pdm09. Fever and cough were the most common symptoms, although they decreased with age (P < .001). Shortness of breath was uncommon among those <50 years but increased with age (P < .001). Middle and older age and history of underlying diabetes or chronic obstructive pulmonary disease were associated with increased odds of death and intensive care unit (ICU) admission, and male sex and influenza vaccination were associated with lower odds. The ICU admissions and mortality occurred across the age spectrum. Conclusions: Both virus and host factors contributed to influenza burden. We identified age differences in comorbidities, presenting symptoms, and adverse clinical outcomes among those hospitalized with influenza and benefit from influenza vaccination in protecting against adverse clinical outcomes. The GIHSN provides an ongoing platform for global understanding of hospitalized influenza illness.

4.
Trop Med Infect Dis ; 9(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276631

RESUMO

Respiratory syncytial virus (RSV) is the most common cause of upper and lower respiratory tract infections in infants and young children. Virus-specific monoclonal antibodies (mAbs) can be used for diagnosis, prophylaxis, and research of RSV pathogenesis. A panel of 16 anti-RSV mAbs was obtained from mice immunized by RSV strain Long. Half of them had virus-neutralizing activity. According to Western blot all of these mAbs effectively bound native oligomeric (homodimeric and homotrimeric) forms of the RSV fusion (F) protein. Only five of the mAbs interacted with the monomeric form, and only one of these possessed neutralizing activity. None of these mAbs, nor the commercial humanized neutralizing mAb palivizumab, reacted with the denaturated F protein. Thus, interaction of all these mAbs with F protein had clear conformational dependence. Competitive ELISA and neutralization assays allowed the identification of nine antigenic target sites for the interaction of mAb with the F protein. Five partially overlapping sites may represent a complex spatial structure of one antigenic determinant, including one neutralizing and four non-neutralizing epitopes. Four sites (three neutralizing and one non-neutralizing) were found to be distinct. As a result of virus cultivation RSV-A, strain Long, in the presence of a large amount of one of the neutralizing mAbs, an escape mutant with a substitution, N240S, in the F protein, was obtained. Thus, it was shown for the first time that position 240 is critical for the protective effect of an anti-RSV antibody. To assess the ability of these mAbs to interact with modern RSV strains circulating in St. Petersburg (Russia) between 2014 and 2022, 73 RSV-A and 22 RSV-B isolates were analyzed. Six mAbs were directed to conserved epitopes of the F protein as they interacted most efficiently with both RSV subtypes in a fixed cell-ELISA and could be used for diagnostic assays detecting RSV.

5.
Viruses ; 14(9)2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36146716

RESUMO

Influenza circulation was substantially reduced after March 2020 in the European region and globally due to the wide introduction of non-pharmaceutical interventions (NPIs) against COVID-19. The virus, however, has been actively circulating in natural reservoirs. In summer 2021, NPIs were loosened in Russia, and influenza activity resumed shortly thereafter. Here, we summarize the epidemiological and virological data on the influenza epidemic in Russia in 2021-2022 obtained by the two National Influenza Centers. We demonstrate that the commonly used baseline for acute respiratory infection (ARI) is no longer sufficiently sensitive and BL for ILI incidence was more specific for early recognition of the epidemic. We also present the results of PCR detection of influenza, SARS-CoV-2 and other respiratory viruses as well as antigenic and genetic analysis of influenza viruses. Influenza A(H3N2) prevailed this season with influenza B being detected at low levels at the end of the epidemic. The majority of A(H3N2) viruses were antigenically and genetically homogenous and belonged to the clade 3C.2a1b.2a.2 of the vaccine strain A/Darwin/9/2021 for the season 2022-2023. All influenza B viruses belonged to the Victoria lineage and were similar to the influenza B/Austria/1359417/2021 virus. No influenza A(H1N1)pdm09 and influenza B/Yamagata lineage was isolated last season.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , COVID-19/epidemiologia , COVID-19/prevenção & controle , Monitoramento Epidemiológico , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza B/genética , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , RNA Viral/genética , SARS-CoV-2/genética , Estações do Ano
6.
J Glob Health ; 12: 04009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35136600

RESUMO

BACKGROUND: Influenza and respiratory syncytial virus (RSV) are among the leading causes of lower respiratory tract infections worldwide. We conducted a comparative analysis of the age distribution and spatiotemporal epidemiology of influenza and RSV in Russia using sentinel surveillance data from 2013-14 to 2018-19 in six cities located in the western, central, and eastern regions of the country. METHODS: We calculated the positivity rate for influenza and RSV (by month, season, and overall) in each city, separately for patients seen at the primary and secondary care level (out-patients medical centres housing GP practices and infectious diseases hospitals, respectively). We compared the age distribution of patients infected with the different influenza virus (sub)types and RSV. RESULTS: A total of 17 551 respiratory specimens were included: the overall positivity rate was 13.5% for influenza and 4.4% for RSV. The A(H1N1)pdm09, A(H3N2) and B virus (sub)types caused 31.3%, 44.0% and, respectively, 24.7% of all influenza cases. The median age was older among influenza (15 years) than among RSV patients (3 years); differences across influenza virus (sub)types were seen only at the primary care level, with influenza A(H3N2) patients being significantly older than A(H1N1)pdm09 or B influenza patients. The timing of influenza epidemics was similar across cities, with the peak typically occurring in February or March. In contrast, the typical peak timing of RSV epidemics varied largely across cities, and the virus was often detected also in spring and summer months (unlike influenza). CONCLUSIONS: Influenza and RSV epidemiology differed in many regards in Russia, especially in the timing of epidemics and the age distribution of infected subjects. Health policies aimed at containing the burden of diseases of viral respiratory infections in Russia should take these findings into account.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Adolescente , Humanos , Lactente , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/epidemiologia , Infecções por Vírus Respiratório Sincicial/epidemiologia , Estações do Ano
7.
J Epidemiol Glob Health ; 11(4): 413-425, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34734387

RESUMO

The expansion and standardization of clinical trials, as well as the use of sensitive and specific molecular diagnostics methods, provide new information on the age-specific roles of influenza and other respiratory viruses in development of severe acute respiratory infections (SARI). Here, we present the results of the multicenter hospital-based study aimed to detect age-specific impact of influenza and other respiratory viruses (ORV). The 2018-2019 influenza season in Russia was characterized by co-circulation of influenza A(H1N1)pdm09 and A(H3N2) virus subtypes which were detected among hospitalized patients with SARI in 19.3% and 16.4%, respectively. RSV dominated among ORV (15.1% of total cases and 26.8% in infants aged ≤ 2 years). The most significant SARI agents in intensive care units were RSV and influenza A(H1N1)pdm09 virus, (37.3% and 25.4%, respectively, of PCR-positive cases). Hyperthermia was the most frequently registered symptom for influenza cases. In contrast, hypoxia, decreased blood O2 concentration, and dyspnea were registered more often in RSV, rhinovirus, and metapneumovirus infection in young children. Influenza vaccine effectiveness (IVE) against hospitalization of patients with PCR-confirmed influenza was evaluated using test-negative case-control design. IVE for children and adults was estimated to be 57.0% and 62.0%, respectively. Subtype specific IVE was higher against influenza A(H1N1)pdm09, compared to influenza A(H3N2) (60.3% and 45.8%, respectively). This correlates with delayed antigenic drift of the influenza A(H1N1)pdm09 virus and genetic heterogeneity of the influenza A(H3N2) population. These studies demonstrate the need to improve seasonal influenza prevention and control in all countries as states by the WHO Global Influenza Strategy for 2019-2030 initiative.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Infecções Respiratórias , Adulto , Fatores Etários , Deriva e Deslocamento Antigênicos , Criança , Pré-Escolar , Hospitalização , Humanos , Lactente , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/prevenção & controle , Estações do Ano , Eficácia de Vacinas
8.
Viruses ; 13(1)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477301

RESUMO

Human respiratory syncytial virus (RSV) is the most common cause of upper and lower respiratory tract infections in infants and young children. It is actively evolving under environmental and herd immunity influences. This work presents, for the first time, sequence variability analysis of RSV G gene and G protein using St. Petersburg (Russia) isolates. Viruses were isolated in a cell culture from the clinical samples of 61 children hospitalized (January-April 2014) with laboratory-confirmed RSV infection. Real-time RT-PCR data showed that 56 isolates (91.8%) belonged to RSV-A and 5 isolates (8.2%) belonged to RSV-B. The G genes were sequenced for 27 RSV-A isolates and all of them belonged to genotype ON1/GA2. Of these RSV-A, 77.8% belonged to the ON1(1.1) genetic sub-cluster, and 14.8% belonged to the ON1(1.2) sub-cluster. The ON1(1.3) sub-cluster constituted a minor group (3.7%). Many single-amino acid substitutions were identified in the G proteins of St. Petersburg isolates, compared with the Canadian ON1/GA2 reference virus (ON67-1210A). Most of the amino acid replacements were found in immunodominant B- and T-cell antigenic determinants of G protein. These may affect the antigenic characteristics of RSV and influence the host antiviral immune response to currently circulating viruses.


Assuntos
Variação Genética , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/fisiologia , Proteínas do Envelope Viral/genética , Genótipo , História do Século XXI , Humanos , Filogenia , Vigilância em Saúde Pública , Infecções por Vírus Respiratório Sincicial/história , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/isolamento & purificação , Federação Russa/epidemiologia , Análise de Sequência de DNA , Proteínas do Envelope Viral/metabolismo
9.
BMC Infect Dis ; 19(1): 415, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31088481

RESUMO

BACKGROUND: The Global Influenza Hospital Surveillance Network is an international platform whose primary objective is to study severe cases of influenza requiring hospitalization. METHODS: During the 2015-2016 influenza season, 11 sites in the Global Influenza Hospital Surveillance Network in nine countries (Russian Federation, Czech Republic, Turkey, France, China, Spain, Mexico, India, and Brazil) participated in a prospective, active-surveillance, hospital-based epidemiological study. Influenza infection was confirmed by reverse transcription-polymerase chain reaction. Influenza vaccine effectiveness (IVE) against laboratory-confirmed influenza was estimated using a test-negative approach. RESULTS: 9882 patients with laboratory results were included of which 2415 (24.4%) were positive for influenza, including 1415 (14.3%) for A(H1N1)pdm09, 235 (2.4%) for A(H3N2), 180 (1.8%) for A not subtyped, 45 (0.5%) for B/Yamagata-lineage, 532 (5.4%) for B/Victoria-lineage, and 33 (0.3%) for B not subtyped. Of included admissions, 39% were < 5 years of age and 67% had no underlying conditions. The odds of being admitted with influenza were higher among pregnant than non-pregnant women (odds ratio, 2.82 [95% confidence interval (CI), 1.90 to 4.19]). Adjusted IVE against influenza-related hospitalization was 16.3% (95% CI, 0.4 to 29.7). Among patients targeted for influenza vaccination, adjusted IVE against hospital admission with influenza was 16.2% (95% CI, - 3.6 to 32.2) overall, 23.0% (95% CI, - 3.3 to 42.6) against A(H1N1)pdm09, and - 25.6% (95% CI, - 86.3 to 15.4) against B/Victoria lineage. CONCLUSIONS: The 2015-2016 influenza season was dominated by A(H1N1)pdm09 and B/Victoria-lineage. Hospitalization with influenza often occurred in healthy and young individuals, and pregnant women were at increased risk of influenza-related hospitalization. Influenza vaccines provided low to moderate protection against hospitalization with influenza and no protection against the predominant circulating B lineage, highlighting the need for more effective and broader influenza vaccines.


Assuntos
Vacinas contra Influenza/imunologia , Influenza Humana/diagnóstico , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Masculino , Pessoa de Meia-Idade , Razão de Chances , Gravidez , Estudos Prospectivos , Estações do Ano , Resultado do Tratamento , Adulto Jovem
10.
BMC Public Health ; 19(1): 487, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046725

RESUMO

BACKGROUND: The Global Influenza Hospital Surveillance Network (GIHSN) aims to determine the burden of severe influenza disease and Influenza Vaccine Effectiveness (IVE). This is a prospective, active surveillance and hospital-based epidemiological study to collect epidemiological data in the GIHSN. In the 2016-2017 influenza season, 15 sites in 14 countries participated in the GIHSN, although the analyses could not be performed in 2 sites. A common core protocol was used in order to make results comparable. Here we present the results of the GIHSN 2016-2017 influenza season. METHODS: A RT-PCR test was performed to all patients that accomplished the requirements detailed on a common core protocol. Patients admitted were included in the study after signing the informed consent, if they were residents, not institutionalised, not discharged in the previous 30 days from other hospitalisation with symptoms onset within the 7 days prior to admission. Patients 5 years old or more must also complied the Influenza-Like Illness definition. A test negative-design was implemented to perform IVE analysis. IVE was estimated using a logistic regression model, with the formula IVE = (1-aOR) × 100, where aOR is the adjusted Odds Ratio comparing cases and controls. RESULTS: Among 21,967 screened patients, 10,140 (46.16%) were included, as they accomplished the inclusion criteria, and tested, and therefore 11,827 (53.84%) patients were excluded. Around 60% of all patients included with laboratory results were recruited at 3 sites. The predominant strain was A(H3N2), detected in 63.6% of the cases (1840 patients), followed by B/Victoria, in 21.3% of the cases (618 patients). There were 2895 influenza positive patients (28.6% of the included patients). A(H1N1)pdm09 strain was mainly found in Mexico. IVE could only be performed in 6 sites separately. Overall IVE was 27.24 (95% CI 15.62-37.27. Vaccination seemed to confer better protection against influenza B and in people 2-4 years, or 85 years old or older. The aOR for hospitalized and testing positive for influenza was 3.02 (95% CI 1.59-5.76) comparing pregnant with non-pregnant women. CONCLUSIONS: Vaccination prevented around 1 in 4 hospitalisations with influenza. Sparse numbers didn't allow estimating IVE in all sites separately. Pregnancy was found a risk factor for influenza, having 3 times more risk of being admitted with influenza for pregnant women.


Assuntos
Hospitalização/estatística & dados numéricos , Vacinas contra Influenza/uso terapêutico , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Vigilância de Evento Sentinela , Vacinação/estatística & dados numéricos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Saúde Global , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/imunologia , Masculino , Pessoa de Meia-Idade , Gravidez , Estações do Ano
11.
J Clin Virol ; 84: 32-38, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27690141

RESUMO

BACKGROUND: Continuous surveillance for genetic changes in circulating influenza viruses is needed to guide influenza prevention and control. OBJECTIVES: To compare intra-seasonal influenza genetic diversity of hemagglutinin in influenza A strains isolated from influenza hospital admissions collected at two distinct sites during the same season. STUDY DESIGN: Comparative phylogenetic analysis of full-length hemagglutinin genes from 77 isolated influenza A viruses from the St. Petersburg, Russian Federation and Valencia, Spain sites of the Global Influenza Hospital Surveillance Network (GIHSN) during the 2013/14 season. RESULTS: We found significant variability in A(H3N2) and A(H1N1)pdm09 viruses between the two sites, with nucleotide variation at antigenic positions much lower for A(H1N1)pdm09 than for A(H3N2) viruses. For A(H1N1)pdm09, antigenic sites differed by three to four amino acids from the vaccine strain, two of them common to all tested isolates. For A(H3N2) viruses, antigenic sites differed by six to nine amino acids from the vaccine strain, four of them common to all tested isolates. A fifth amino acid substitution in the antigenic sites of A(H3N2) defined a new clade, 3C.2. For both influenza A subtypes, pairwise amino acid distances between circulating viruses and vaccine strains were significantly higher at antigenic than at non-antigenic sites. Whereas A(H1N1)pdm09 viruses clustered with clade 6B and 94% of A(H3N2) with clade 3C.3, at both study sites A(H3N2) clade 3C.2 viruses emerged towards the end of the season, showing greater pairwise amino acid distances from the vaccine strain compared to the predominant clade 3C.3. CONCLUSIONS: Influenza A antigenic variants differed between St. Petersburg and Valencia, and A(H3N2) clade 3C.2 viruses were characterized by more amino acid differences from the vaccine strain, especially at the antigenic sites.


Assuntos
Monitoramento Epidemiológico , Saúde Global , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/epidemiologia , Influenza Humana/virologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Variação Genética , Genoma Viral , Humanos , Lactente , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Masculino , Pessoa de Meia-Idade , Filogenia , RNA Viral/genética , Federação Russa/epidemiologia , Estações do Ano , Análise de Sequência de DNA , Espanha/epidemiologia , Adulto Jovem
12.
BMC Public Health ; 16 Suppl 1: 757, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27556802

RESUMO

The Global Influenza Hospital Surveillance Network (GIHSN) has established a prospective, active surveillance, hospital-based epidemiological study to collect epidemiological and virological data for the Northern and Southern Hemispheres over several consecutive seasons. It focuses exclusively on severe cases of influenza requiring hospitalization. A standard protocol is shared between sites allowing comparison and pooling of results. During the 2014-2015 influenza season, the GIHSN included seven coordinating sites from six countries (St. Petersburg and Moscow, Russian Federation; Prague, Czech Republic; Istanbul, Turkey; Beijing, China; Valencia, Spain; and Rio de Janeiro, Brazil). Here, we present the detailed epidemiological and influenza vaccine effectiveness findings for the Northern Hemisphere 2014-2015 influenza season.


Assuntos
Hospitalização , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Vigilância da População , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Brasil/epidemiologia , Criança , Pré-Escolar , China/epidemiologia , República Tcheca/epidemiologia , Feminino , Humanos , Lactente , Recém-Nascido , Influenza Humana/epidemiologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Federação Russa/epidemiologia , Estações do Ano , Espanha/epidemiologia , Turquia/epidemiologia
13.
PLoS One ; 11(5): e0154970, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27196667

RESUMO

BACKGROUND: The Global Influenza Hospital Surveillance Network was established in 2012 to obtain valid epidemiologic data on hospital admissions with influenza-like illness. Here we describe the epidemiology of admissions with influenza within the Northern Hemisphere sites during the 2013/2014 influenza season, identify risk factors for severe outcomes and complications, and assess the impact of different influenza viruses on clinically relevant outcomes in at-risk populations. METHODS: Eligible consecutive admissions were screened for inclusion at 19 hospitals in Russia, Turkey, China, and Spain using a prospective, active surveillance approach. Patients that fulfilled a common case definition were enrolled and epidemiological data were collected. Risk factors for hospitalization with laboratory-confirmed influenza were identified by multivariable logistic regression. FINDINGS: 5303 of 9507 consecutive admissions were included in the analysis. Of these, 1086 were influenza positive (534 A(H3N2), 362 A(H1N1), 130 B/Yamagata lineage, 3 B/Victoria lineage, 40 untyped A, and 18 untyped B). The risk of hospitalization with influenza (adjusted odds ratio [95% confidence interval]) was elevated for patients with cardiovascular disease (1.63 [1.33-2.02]), asthma (2.25 [1.67-3.03]), immunosuppression (2.25 [1.23-4.11]), renal disease (2.11 [1.48-3.01]), liver disease (1.94 [1.18-3.19], autoimmune disease (2.97 [1.58-5.59]), and pregnancy (3.84 [2.48-5.94]). Patients without comorbidities accounted for 60% of admissions with influenza. The need for intensive care or in-hospital death was not significantly different between patients with or without influenza. Influenza vaccination was associated with a lower risk of confirmed influenza (adjusted odds ratio = 0.61 [0.48-0.77]). CONCLUSIONS: Influenza infection was detected among hospital admissions with and without known risk factors. Pregnancy and underlying comorbidity increased the risk of detecting influenza virus in patients hospitalized with influenza-like illness. Our results support influenza vaccination as a measure for reducing the risk of influenza-associated hospital admission.


Assuntos
Influenza Humana/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , China , Análise por Conglomerados , Comorbidade , Monitoramento Epidemiológico , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Razão de Chances , Orthomyxoviridae , Avaliação de Resultados em Cuidados de Saúde , Admissão do Paciente , Gravidez , Complicações Infecciosas na Gravidez , Estudos Prospectivos , Risco , Fatores de Risco , Federação Russa , Espanha , Turquia , Adulto Jovem
14.
Influenza Other Respir Viruses ; 10(4): 247-53, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26992820

RESUMO

A dramatic increase of influenza activity in Russia since week 3 of 2016 significantly differs from previous seasons in terms of the incidence of influenza and acute respiratory infection (ARI) and in number of lethal cases. We performed antigenic analysis of 108 and whole-genome sequencing of 77 influenza A(H1N1)pdm09 viruses from Moscow and Saint Petersburg. Most of the viruses were antigenically related to the vaccine strain. Whole-genome analysis revealed a composition of specific mutations in the internal genes (D2E and M83I in NEP, E125D in NS1, M105T in NP, Q208K in M1, and N204S in PA-X) that probably emerged before the beginning of 2015/2016 epidemic season.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/virologia , Proteínas Virais/genética , Genoma Viral , Humanos , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/epidemiologia , Moscou/epidemiologia , Mutação , Federação Russa/epidemiologia , Estações do Ano , Proteínas Virais/metabolismo
15.
Influenza Other Respir Viruses ; 9(6): 277-286, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26198771

RESUMO

BACKGROUND: Influenza is a global public health problem. However, severe influenza only recently has been addressed in routine surveillance. OBJECTIVES: The Global Influenza Hospital Surveillance Network (GIHSN) was established to study the epidemiology of severe influenza in consecutive seasons in different countries. Our objective is to describe the GIHSN approach and methods. METHODS: The GIHSN uses prospective active surveillance to identify consecutive influenza admissions in permanent residents of well-defined geographic areas in sites around the world. A core common protocol is followed. After consent, data are collected on patient characteristics and clinical outcomes, respiratory swabs are obtained, and the presence of influenza virus and subtype or lineage is ascertained by polymerase chain reaction. Data are collated and analyzed at the GIHSN coordination center. RESULTS: The GIHSN has run its activities for two consecutive influenza seasons, 2012-2013 and 2013-2014, and hospitals in Brazil, China, France, Russian Federation, Turkey, and Spain have been involved in one or both seasons. Consistency on the application of the protocol and heterogeneity for the first season have been addressed in two previous publications. During both seasons, 19 677 eligible admissions were recorded; 11 843 (60%) were included and tested, and 2713 (23%) were positive for influenza: 991 (37%) A(H1N1); 807 (30%) A(H3N2); 583 (21%) B/Yamagata; 56 (2%) B/Victoria and 151 (6%) influenza A; and 125 (5%) influenza B were not characterized. CONCLUSIONS: The GIHSN is a platform that provides information on severe influenza worldwide, applying a common core protocol and a consistent case definition.

16.
BMC Infect Dis ; 15: 1, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25567701

RESUMO

BACKGROUND: The 2009 H1N1 pandemic highlighted the need to routinely monitor severe influenza, which lead to the establishment of sentinel hospital-based surveillance of severe acute respiratory infections (SARI) in several countries in Europe. The objective of this study is to describe characteristics of SARI patients and to explore risk factors for a severe outcome in influenza-positive SARI patients. METHODS: Data on hospitalised patients meeting a syndromic SARI case definition between 2009 and 2012 from nine countries in Eastern Europe (Albania, Armenia, Belarus, Georgia, Kazakhstan, Kyrgyzstan, Romania, Russian Federation and Ukraine) were included in this study. An exploratory analysis was performed to assess the association between risk factors and a severe (ICU, fatal) outcome in influenza-positive SARI patients using a multivariate logistic regression analysis. RESULTS: Nine countries reported a total of 13,275 SARI patients. The majority of SARI patients reported in these countries were young children. A total of 12,673 SARI cases (95%) were tested for influenza virus and 3377 (27%) were laboratory confirmed. The majority of tested SARI cases were from Georgia, the Russian Federation and Ukraine and the least were from Kyrgyzstan. The proportion positive varied by country, season and age group, with a tendency to a higher proportion positive in the 15+ yrs age group in six of the countries. ICU admission and fatal outcome were most often recorded for influenza-positive SARI cases aged > 15 yrs. An exploratory analysis using pooled data from influenza-positive SARI cases in three countries showed that age > 15 yrs, having lung, heart, kidney or liver disease, and being pregnant were independently associated with a fatal outcome. CONCLUSIONS: Countries in Eastern Europe have been able to collect data through routine monitoring of severe influenza and results on risk factors for a severe outcome in influenza-positive SARI cases have identified several risk groups. This is especially relevant in the light of an overall low vaccination uptake and antiviral use in Eastern Europe, since information on risk factors will help in targeting and prioritising vulnerable populations.


Assuntos
Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/mortalidade , Infecções Respiratórias/mortalidade , Adolescente , Adulto , Fatores Etários , Idoso , Criança , Pré-Escolar , Europa (Continente)/epidemiologia , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Lactente , Recém-Nascido , Influenza Humana/patologia , Masculino , Pessoa de Meia-Idade , Infecções Respiratórias/patologia , Fatores de Risco , Vigilância de Evento Sentinela , Índice de Gravidade de Doença , Adulto Jovem
17.
BMC Public Health ; 14: 564, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24903737

RESUMO

BACKGROUND: The Global Influenza Hospital Surveillance Network (GIHSN) was developed to improve understanding of severe influenza infection, as represented by hospitalized cases. The GIHSN is composed of coordinating sites, mainly affiliated with health authorities, each of which supervises and compiles data from one to seven hospitals. This report describes the distribution of influenza viruses A(H1N1), A(H3N2), B/Victoria, and B/Yamagata resulting in hospitalization during 2012-2013, the network's first year. METHODS: In 2012-2013, the GIHSN included 21 hospitals (five in Spain, five in France, four in the Russian Federation, and seven in Turkey). All hospitals used a reference protocol and core questionnaire to collect data, and data were consolidated at five coordinating sites. Influenza infection was confirmed by reverse-transcription polymerase chain reaction. Hospitalized patients admitted within 7 days of onset of influenza-like illness were included in the analysis. RESULTS: Of 5034 patients included with polymerase chain reaction results, 1545 (30.7%) were positive for influenza. Influenza A(H1N1), A(H3N2), and both B lineages co-circulated, although distributions varied greatly between coordinating sites and over time. All age groups were affected. A(H1N1) was the most common influenza strain isolated among hospitalized adults 18-64 years of age at four of five coordinating sites, whereas A(H3N2) and B viruses were isolated more often than A(H1N1) in adults ≥65 years of age at all five coordinating sites. A total of 16 deaths and 20 intensive care unit admissions were recorded among patients with influenza. CONCLUSIONS: Influenza strains resulting in hospitalization varied greatly between coordinating sites and over time. These first-year results of the GIHSN are relevant, useful, and timely. Due to its broad regional representativeness and sustainable framework, this growing network should contribute substantially to understanding the epidemiology of influenza, particularly for more severe disease.


Assuntos
Hospitalização/estatística & dados numéricos , Influenza Humana/epidemiologia , Vigilância da População/métodos , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Saúde Global , Humanos , Lactente , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Humana/prevenção & controle , Serviços de Informação/organização & administração , Masculino , Pessoa de Meia-Idade , Estações do Ano
18.
PLoS One ; 9(6): e100497, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24945510

RESUMO

BACKGROUND: The effectiveness of currently licensed vaccines against influenza has not been clearly established, especially among individuals at increased risk for complications from influenza. We used a test-negative approach to estimate influenza vaccine effectiveness (IVE) against hospitalization with laboratory-confirmed influenza based on data collected from the Global Influenza Hospital Surveillance Network (GIHSN). METHODS AND FINDINGS: This was a multi-center, prospective, active surveillance, hospital-based epidemiological study during the 2012-2013 influenza season. Data were collected from hospitals participating in the GIHSN, including five in Spain, five in France, and four in the Russian Federation. Influenza was confirmed by reverse transcription-polymerase chain reaction. IVE against hospitalization for laboratory-confirmed influenza was estimated for adult patients targeted for vaccination and who were swabbed within 7 days of symptom onset. The overall adjusted IVE was 33% (95% confidence interval [CI], 11% to 49%). Point estimates of IVE were 23% (95% CI, -26% to 53%) for influenza A(H1N1)pdm09, 30% (95% CI, -37% to 64%) for influenza A(H3N2), and 43% (95% CI, 17% to 60%) for influenza B/Yamagata. IVE estimates were similar in subjects <65 and ≥65 years of age (35% [95% CI, -15% to 63%] vs.31% [95% CI, 4% to 51%]). Heterogeneity in site-specific IVE estimates was high (I2 = 63.4%) for A(H1N1)pdm09 in patients ≥65 years of age. IVE estimates for influenza B/Yamagata were homogenous (I2 = 0.0%). CONCLUSIONS: These results, which were based on data collected from the GIHSN during the 2012-2013 influenza season, showed that influenza vaccines provided low to moderate protection against hospital admission with laboratory-confirmed influenza in adults targeted for influenza vaccination. In this population, IVE estimates against A(H1N1)pdm09 were sensitive to age group and study site. Influenza vaccination was moderately effective in preventing admissions with influenza B/Yamagata for all sites and age groups.


Assuntos
Hospitalização/estatística & dados numéricos , Vacinas contra Influenza/imunologia , Influenza Humana/epidemiologia , Influenza Humana/imunologia , Internacionalidade , Estações do Ano , Vigilância de Evento Sentinela , Adolescente , Adulto , Idoso , Feminino , Humanos , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Vacinação/estatística & dados numéricos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...